
Effective mass approximation
- Electrons
- Holes
- Valence band structure in cubic and hexagonal semiconductors

Lecture 3 – 25/09/2024

Semiconductor physics and light-matter interaction



2Semiconductor physics and light-matter interaction

Summary Lecture 2
• In a crystal → atoms create a periodic potential 
• Kronig-Penney model:  Solving Schrödinger → 2 different solutions for (r) 

depending on V(r) magnitude
• Free electrons  (i.e., 𝑽 ൌ 𝟎):  Schrödinger solution: 𝜓௡ 𝑟 ൌ 𝜓଴exp ሺ𝑖𝑘𝑟ሻ

Energy:  𝐸 ൌ ௣మ

ଶ௠బ
→ 𝐸௡ሺ𝑘ሻ≡ dispersion curve → gives electronic band structure

→ exhibits symmetry of reciprocal space

→ reduced zone scheme (≡folding in 1st BZ) 
→ description of crystal properties as a whole
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Summary Lecture 2
• Nearly free electron: electron in crystal with small periodic potential V
→ weak perturbation of free electron energy

Bloch-Floquet theorem: 𝜓௞ሺ𝑥ሻ ൌ ∑ 𝐶ሺ𝑘 െ 𝐺ሻ𝑒ି௜ ௞ିீ ௫
ீ

→ Secular equation:  
ħమ௞మ

ଶ௠బ
െ 𝐸௞ 𝐶 𝑘 ∑ 𝑉௚𝐶 𝑘 െ 𝐺 ൌ 0 ீ solutions if det. = 0

Particular case: k nearby 1st BZ edge (i.e., 𝑘 ൎ 𝐺/2ሻ

→  𝐸േ ൌ 𝐸଴ േ 𝑉 ൅ ħଶ௤మ

ଶ௠బ
ሺ1 േ ଶாబ

௏
ሻ

→ Bandgap: 𝐸௚ ൌ 2𝑉ሺ𝑞 ൌ 0ሻ

Effective mass: 𝑚േ
∗ ൌ ħଶሺௗ

మா
ௗ௤మ

ሻିଵൌ 𝑚଴
ଵ

ଵേమಶబೇ
ൎ േ𝑚଴

௏
ଶாబ

Smaller 𝐸୥ → lighter 𝑚∗



High symmetry points:  Γ, L, X, and K are within the 1st Brillouin zone (joined
by high-symmetry lines)

1st Brillouin zone of the fcc lattice
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Brillouin zone (3D case)

Irreducible Brillouin zone  first Brillouin zone 
reduced by all of the symmetries in the point group 
of the lattice 

 Any point of the first Brillouin zone can be 
accessed from this irreducible representation via a 
symmetry operation. Hence, knowing the 
dispersion of electrons along high-symmetry lines 
will provide you with a complete description of the 
energy levels accessible to electrons in a crystal 
(full mapping of electronic band structure)!   



Previous approach (nearly-free electron model)  leads to the formation of 
forbidden energy band(s) but it remains difficult to predict the exact value of 
the bandgap or that of the effective masses

k.p method: semi-empirical method relying on numbers deduced from
experiments
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k.p method
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One does recall that the operators p and p2 behave as follows:
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One can thus rewrite Schrödinger’s equation such that:
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k.p method
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At k  0, 0. mk p can be considered as a perturbation
 The eigenenergies are then given by:

2
0 0

.u u


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n',0 n,0
n, n,0

n' n n,0 n',0

kE E
2m m E Ek

k p

We only pay attention to electronic states close in energy located at the top of the VB and at the 
bottom of the CB 

The energy dispersion of the CB level -in the isotropic case, e.g., for direct bandgap SCs- writes
as:
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Kane matrix element
 describes coupling between electronic states in  bands

2-band modeling (most simplified treatment)   topmost 
states of VB more complex (HH, LH and SO subbands)
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 energy
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with

• The matrix element P2 can be deduced from optical properties, e.g., via the measurement of 
the dielectric function (real + imaginary parts) deduced from spectroscopic ellipsometry or 
when modeling an interband transition (e.g., oscillator strength such as deduced from
absorption or photoluminescence experiments)

• P2 is about equal to 20-25 eV for most semiconductors

The effective mass varies as the bandgap
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k.p method
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Relevant literature: See section 2.6 (especially subsection 2.6.1) in the book by Yu & Cardona 
(cf. Lecture 1)
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 Good approximation 

for zinc-blende 
semiconductors



The crystal field affects the electron properties  different electron mass depending on the
material system of interest

2nd Newton’s law of motion:

Electrons are described by their Bloch wave function:

The wave packet velocity is given by:

and the acceleration writes:
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Effective mass: from 2nd Newton’s law

d
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If we apply an external force to an electron, its energy will increase over a certain distance dx by:

Its acceleration is then given by:

and the effective mass is then defined as:
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Effective mass
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Infinitesimal work



• Inversely proportional to the curvature of the k-space energy dispersion

• Effective mass: positive for the CB and negative for the VB (true close to 
the  point)

• “Hole” in the VB  like an electron in the CB. Actually, a hole is a missing 
electron in the VB!
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Effective mass
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• Direct bandgap (e.g., GaAs): the CB is isotropic around k = 0 (s state)

 Isotropic effective mass: the mobility does not depend on the electron
motion direction in the crystal

• Indirect bandgap (e.g., Si): the CB is anisotropic around the CB energy
minimum (different effective masses)

 Energy surface E(k) = constant is no longer a sphere, but a series of
ellipsoids oriented along the 3 directions of reciprocal space
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Effective mass
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 

2-band approximation

XL XL



Anisotropic case Isotropic case
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Representation of the constant energy surfaces about the extrema reflecting 
the effective mass distribution in k-space

Cigar-shaped ellipsoids

Effective mass

Semiconductor physics and light-matter interaction

Reciprocal space 
representation of 
isosurfaces

!

isosurfaces



Anisotropic case
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Due to cumulative interactions between atomic neighbors, the 
minimum of the valley in k-space may occur not at the -point 
(deviation from that of a perfect sphere)

For silicon/germanium, the energy surface for the conduction band 
consists of six/four ellipsoids of revolution lying along the 
<100>/<111> directions with a longitudinal mass ml and a 
transverse mass mt

The average density of states effective mass is equal to (6/4ml
1/2

mt)2/3

Si: symmetry-related minima at points 
~80% of the way to zone boundary

X valleys of Si L valleys of Ge

Effective mass

Semiconductor physics and light-matter interaction

3-fold symmetry 4-fold symmetry
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The energy dispersion E(k) can be expanded in Taylor series
About a band extremum k = k0, where the first derivative is zero, E(k) can be expressed as follows:

ml and mt are the longitudinal and transverse effective masses, respectively

Longitudinal and transverse masses

k0

Direct bandgap SC:                       

Indirect bandgap SC:                       
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Effective mass
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How can you visualize those two masses on the sketch?
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What will be the effective mass of an electron in the AlGaAs alloy?
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Band structure of GaAs Band structure of AlAs

1st principles calculations of quasiparticle band structure

Effective mass

Semiconductor physics and light-matter interaction

CB minimum



E(k)

 k

lh

hh

Valence band structure:

Two branches are degenerate in k = 0: 
- Heavy holes (hh)
- Light holes (lh)

SO band stands for spin-orbit coupling due to the lack of inversion symmetry in zinc-blende structures 
(relativistic effect scaling with the atomic number of the atom)
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GaNInPGaPAlPInAsGaAsAlAsCompound

0.0170.1080.080.070.390.3410.28SO (eV)

Effective mass

Diamond and zinc-blende structures

> 3100 citations!
Semiconductor physics and light-matter interaction

Splitting < kBT at 300 K!
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Structure of the valence band: Light and heavy holes
Atomic levels are generally degenerate, which may have important consequences for the band 
energy spectrum of a crystal
Case of cubic semiconductors (e.g., diamond or zinc-blende SCs) without spin effects

p = 0 CB state is s-type (l = 0) whereas the corresponding VB state is p-type (l = 1) and triply 
degenerate (ml = 0, 1)

l: atomic orbital angular momentum
ml: projection of l on an arbitrary axis

Effective mass description of the VB accounting for its threefold degeneracy 

 Construction of a scalar Hamiltonian invariant under rotations, quadratic in p, done using 
symmetry considerations using p and the pseudo-vector of angular momentum L ( set of 3  3 
matrices Lx, Ly, and Lz corresponding to l = 1)

Sole possibility, the Luttinger Hamiltonian:

 22 IH Ap B  pL where A and B are arbitrary constants, and I is a unit 3  3 matrix

Semiconductor physics and light-matter interaction

 band extremum
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Structure of the valence band: Light and heavy holes
The energy spectrum in the VB is found by diagonalizing the Hamiltonian H, e.g., by choosing 
the direction of the z-axis along the vector p

 and the eigenvalues of H are given by: 2 2 2
zp LpL

     2 21 0for and for hh z lh zE p A B p L E p Ap L     

Thus, the VB energy spectrum has two parabolic branches with the first one, Ehh(p), which is 
twofold degenerate

Two effective masses can be introduced that follow the relations: 

1 1
2 2

and
hh lh

A B A
m m

  

The difference between light and heavy holes is that the heavy hole has a projection of its orbital 
momentum L on the direction of p (what is called the helicity) equal to 1 while the light hole has a 
projection equal to 0

Usually, B < 0 but A + B > 0

Semiconductor physics and light-matter interaction
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Effects of spin-orbit interaction on the VB

The spin-orbit interaction will double all the states but the changes in the energy 
spectrum will essentially occur at the VB level

L and S are no longer conserved separately but only the total angular momentum J = L + S for 
which the eigenvalues of J2 are j(j+1) with |l-s|  j  l+s
 CB states are not impacted (j = s = 1/2) but the VB state with l = 1 is split into two states with 

j = 3/2 and j = 1/2

For p = 0, we have a fourfold degenerate state (j = 3/2 and Jz = +3/2, +1/2, -1/2, -3/2) separated 
by an energy , the spin-orbit splitting, from a doubly degenerate state  (j = 1/2 and Jz = +1/2, -
1/2)

The CB remains doubly degenerate. The value of  is small for materials with light atoms and 
may be quite large (comparable to Eg) in semiconductors composed of heavy atoms like InSb
(cf. slide #18 for the trend regarding the magnitude of ) 

Semiconductor physics and light-matter interaction
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Effects of spin-orbit interaction on the VB

hh

lh

Band structure of a zinc-blende 
SC near the -point

Regarding the j = 3/2 state for p  0 for energies E(p) << , a 
Luttinger Hamiltonian is constructed in a way similar to the case 
where SO interaction was neglected. The main difference is that 
3  3 Lx,y,z matrices are now replaced by 4  4 Jx,y,z matrices 
corresponding to j = 3/2

 22 IH Ap B  pJ

where now I is a unit 4  4 matrix and the matrix Jz is 
diagonal with eigenvalues +3/2, +1/2, -1/2, and -3/2 

   

   

2
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hh z
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lh z
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B p
E p A p J
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B p
E p A p J

m

      
 

      
 

Usually, B < 0 but A + 9B/4 > 0, hence both 
masses are > 0

Helicity equal to 3/2 for HH and 1/2 for LH
Semiconductor physics and light-matter interaction



R. Dingle et al., Phys. Rev. B 4, 1211 (1971) 

S. Nakamura and S. F. Chichibu in “Introduction to nitride semiconductor blue lasers and LEDs” 
(Taylor & Francis Eds, London, 2000)
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Degeneracy lift 

GaN optical properties (wurtzite structure)

Semiconductor physics and light-matter interaction
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As will be inferred from carrier statistics, in relaxed (i.e., strain-free)
semiconductor layers hole transport will be dominated by heavy holes !

Effective mass

Hole effective mass 
(m*/m0)

Electron effective 
mass (m*/m0)

Semiconductors

0.53(mhh)-0.16(mlh)0.92(ml)-0.19(mt)Si
0.35(mhh)-0.043(mlh)1.59(ml)-0.082(mt)Ge
0.62(mhh)-0.074(mlh)0.067GaAs
0.6(mhh)-0.027(mlh)0.023InAs
1.2(mhh)-0.26(mlh)0.2GaN

Semiconductor physics and light-matter interaction



• Upper level state of the VB in  (k = 0), 

For cubic SCs, two degenerate bands with different masses mhh >> mlh

Third band, the spin-orbit or split-off VB separated by an energy  at the -point from the 
HH and LH bands  

• Lower level state in the CB 

  direct

k  0  indirect, X-point (AlAs) or near X-point (Si) or L-point (Ge)

• Effective mass given by the dispersion energy curvature

• Isotropic for the CB and the VB in 

• Anisotropic for the CB in X or L

(longitudinal and transverse effective masses)
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Band structure of bulk semiconductors - summary

Semiconductor physics and light-matter interaction


