Lecture 3 — 25/09/2024

Effective mass approximation

- Electrons
- Holes
- Valence band structure in cubic and hexagonal semiconductors
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Summary Lecture 2

* |In a crystal — atoms create a periodic potential

* Kronig-Penney model: Solving Schrodinger — 2 different solutions for yAr)
depending on V(r) magnitude

* Free electrons (i.e., V = 0): Schrodinger solution: y,,(r) = Yyexp(ikr)

2
] p — . . . :
Energy: E = T E., (k)= dispersion curve — gives electronic band structure
0
— exhibits symmetry of reciprocal space
Bragg plane y ry P P
E(k) — reduced zone scheme (=folding in 15t BZ)
: ! Zomege B -?vm;n: E — description of crystal properties as a whole
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Summary Lecture 2

* Nearly free electron: electron in crystal with small periodic potential V
— weak perturbation of free electron energy

Bloch-Floquet theorem: Y (x) = ), C(k — G)e‘i(k‘G)x
21,2
ok _ Ek) C(k) X6 V;C(k — G) = 0 solutions if det. = 0

— Secular equation: (
2m,

Particular case: k nearby 1t BZ edge (i.e., k = G/2) E,

22
— Ey=Eg+V+2 ~(1+ + 2%

— Bandgap: E;, = 2V (q = 0)
2V

=]

1
Effective mass: m} = hz( ) l=my—g =~ tmy—
1+ 2Ey

Smaller E; — lighter m*
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Brillouin zone (3D case)

High symmetry points: T, L, X, and K are within the 1st Brillouin zone (joined
by high-symmetry lines)

Irreducible Brillouin zone = first Brillouin zone
reduced by all of the symmetries in the point group
of the lattice

= Any point of the first Brillouin zone can be
accessed from this irreducible representation via a
symmetry operation. Hence, knowing the
dispersion of electrons along high-symmetry lines
will provide you with a complete description of the
energy levels accessible to electrons in a crystal
(full mapping of electronic band structure)!

(100) direction: I" A X
<1 1 1> direction:T" A L
<110> direction:T" =~ K
1st Brillouin zone of the fcc lattice
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k.p method

Previous approach (nearly-free electron model) = leads to the formation of
forbidden energy band(s) but it remains difficult to predict the exact value of
the bandgap or that of the effective masses

k.p method: semi-empirical method relying on numbers deduced from
experiments

Semiconductor physics and light-matter interaction



k.p method

{;')’;0 + V(r):|Wn,k (r) =E, (I‘)l//n’k (r) ‘/\/\mﬂv%\’mbw

The eigenfunctions ¥, () are Bloch functions, which write as:

u,  (r)e™ with u,, (r)=u,, (r+T) (with T a vector of the lattice)

One does recall that the operators p and p? behave as follows:
Py, (r)= ’kr[p+hk U, ( ] and p = —ihV

P, (r) =€ | (p+1k) U, (r) ]

One can thus rewrite Schrodinger’s equation such that:
(p+7k)

m + V(r)] Uy (r)=E, U, (r)

2 hzkz
_;:no 2, +V(r)} U, (r)=E, U, (1)

Semiconductor physics and light-matter interaction

Overview




k.p method

At k ~ 0, hk.p/m, can be considered as a perturbation
= The eigenenergies are then given by:

) h2k2 N \no \

We only pay attention to electronic states close in energy located at the top of the VB and at the
bottom of the CB

3
@
2> The energy dispersion of the CB level -in the isotropic case, e.g., for direct bandgap SCs- writes
9 as:
o 22 2,0 K >‘2 . -
E _F 4+ hk N hok™ \Uy0|Px|Yeo 2-band modeling (most simplified treatment) = topmost
T om, m? states of VB more complex (HH, LH and SO subbands)
21,2 21,2 p2 21,2 2
Eck=E60+hk +hk PW:EC0+hk 1+P— with PZ:iKqu p, uc0>‘2 = energy
’ o 2my 2m, E, T 2m, E, . m," " ’

Kane matrix element
= describes coupling between electronic states in # bands
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k.p method

ck = Fc,0

Overview

-1
. P’
with |[m*=m, (1 + E—J The effective mass varies as the bandgap

« The matrix element P2 can be deduced from optical properties, e.g., via the measurement of

the dielectric function (real + imaginary parts) deduced from spectroscopic ellipsometry or
when modeling an interband transition (e.g., oscillator strength such as deduced from

absorption or photoluminescence experiments)

« P2js about equal to 20-25 eV for most semiconductors [P’ ~

2

m,

(

27th
a

;

Good approximation
for zinc-blende
semiconductors

Relevant literature: See section 2.6 (especially subsection 2.6.1) in the book by Yu & Cardona

(cf. Lecture 1)
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Effective mass: from 2" Newton'’s law

The crystal field affects the electron properties = different electron mass depending on the
material system of interest

. d
2nd Newton’s law of motion: F=m av

dt
Electrons are described by their Bloch wave function:
y(r,t)=u(r)e™e™ with E, =ho,

The wave packet velocity is given by:

y=de _1dE
dk  h dk

and the acceleration writes:

_dv_lddE_1d
! dt hdtdk hAdk
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Effective mass

If we apply an external force to an electron, its energy will increase over a certain distance dx by:

Infinitesimal work

/
dE = Fdx =Fvdt = ﬁ =Fv

£

Its acceleration is then given by:

/ I d lmdw_ldE

- V=—=——
h hdkhdk h? dk? dk hdk

and the effective mass is then defined as:

e / d’E
dk’
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Effective mass

 Inversely proportional to the curvature of the k-space energy dispersion

« Effective mass: positive for the CB and negative for the VB (true close to
the I" point)

« “Hole” in the VB = like an electron in the CB. Actually, a hole is a missing
electron in the VB!

Semiconductor physics and light-matter interaction
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Effective mass

* Direct bandgap (e.g., GaAs): the CB is isotropic around k =0 (s state)

—> Isotropic effective mass: the mobility does not depend on the electron
motion direction in the crystal
* Indirect bandgap (e.g., Si): the CB is anisotropic around the CB energy

minimum (different effective masses)

= Energy surface E(k) = constant is no longer a sphere, but a series of
ellipsoids oriented along the 3 directions of reciprocal space

2 2 2
E, (k) =E, (0)+h| Sy o | K
2m, 2m, 2m,
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Effective mass
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Effective mass

Representation of the constant energy surfaces about the extrema reflecting
effective mass distribution in k-space

iIsosurfaces

Cigar-shaped ellipsoids

N P

Reciprocal space y

representation of
( A (;aAs
Si

isosurfaces
Anisotropic case Isotropic case

pe 4
!

Y x
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Effective mass

Si: symmetry-related minima at points
~80% of the way to zone boundary

fz

l» Due to cumulative interactions between atomic neighbors, the

OA 3 minimum of the valley in k-space may occur not at the I'-point
AZ’ (deviation from that of a perfect sphere)
A ¢
Q? = g
: ( N For silicon/germanium, the energy surface for the conduction band
9 gi consists of six/four ellipsoids of revolution lying along the
<100>/<111> directions with a longitudinal mass m,and a
3-fold symmetry 4-fold symmetry transverse mass m,

010

The average density of states effective mass is equal to (6/4m,"?
m,)23

X valleys of Si L valleys of Ge

Anisotropic case
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Effective mass

Longitudinal and transverse masses

The energy dispersion E(k) can be expanded in Taylor series
About a band extremum k = k,, where the first derivative is zero, E(k) can be expressed as follows:

1 d°E > 1d°E > 1d°E 2
E(k)zE(k0)+5d—kX2(kx—kOX) +o— —(k, —ky, ) + i — (k, k)
y ?Z
Direct bandgap SC.: i
ld E 2_ h2k2
E (k)=E A
c(K)=Ecto ok =Ecto ko@ g
A ~
Indirect bandgap SC: (k|:kz,kL:1/kf+ky2) A X
1 d°E 2 1d’E h’ h’
EC(k)zEC+§d—kH2(k”—ko) +2d/<jk —E, + - — (K, k) +2—m:ki

m, and m;, are the longitudinal and transverse effective masses, respectively
How can you visualize those two masses on the sketch?
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Effective mass

Band structure of GaAs

IRy VA

\/\

Energy (eV)

-10

L 5 X UK I

Energy (eV)

=10

Band structure of AlAs

~—

CB minimum

i

18t principles calculations of quasiparticle band structure

What will be the effective mass of an electron in the AlGaAs alloy?

Semiconductor physics and light-matter interaction
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Effective mass

Valence band structure: sl  |BukGaAs
r k
\ Y
. 2.0 HHE:B /
= - e
hh L) 0
S 10}
Ih 1Y) Eg
: : & HH
Diamond and zinc-blende structures Z 00F e
E(k) w T J_,__:_&__scf‘“'m__:‘“-um
=1.0F
. 7 {I:})\
Two branches are degenerate in k= 0: 20l . o
- Heavy holes (hh) 02 % 0 %. 02
. = = < =
- Light holes (lh) K @uiay

SO band stands for spin-orbit coupling due to the lack of inversion symmetry in zinc-blende structures
(relativistic effect scaling with the atomic number of the atom)

Aso (€V) 028 0341 039 0.07 0 0.108

9\

PHYSICAL REVIEW VOLUME 100, NUMBER 2 OCTOBER 15, 1955
Spin-Orbit Coupling Effects in Zinc Blende Structures*
> 3100 citations! G, Dasssmmost

Department of Physics, University of California, Berkeley, California
(Received June 30, 1955)
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Structure of the valence band: Light and heavy holes

Atomic levels are generally degenerate, which may have important consequences for the band
energy spectrum of a crystal

Case of cubic semiconductors (e.g., diamond or zinc-blende SCs) without spin effects

p = 0 CB state is s-type (/ = 0) whereas the corresponding VB state is p-type (/= 1) and triply

degenerate (m, =0, 1) _ _
I: atomic orbital angular momentum

m,. projection of / on an arbitrary axis

Effective mass description of the VB accounting for its threefold degeneracy = band extremum
= Construction of a scalar Hamiltonian invariant under rotations, quadratic in p, done using
symmetry considerations using p and the pseudo-vector of angular momentum L (= set of 3 x 3

matrices L,, L,, and L, corresponding to / = 1)

Sole possibility, the Luttinger Hamiltonian:

2
H= Ap2 I+ B(pL) where A and B are arbitrary constants, and / is a unit 3 x 3 matrix

Semiconductor physics and light-matter interaction
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Structure of the valence band: Light and heavy holes

The energy spectrum in the VB is found by diagonalizing the Hamiltonian H, e.g., by choosing

the direction of the z-axis along the vector p

= (pL)2 = p’L> and the eigenvalues of H are given by:

E..(p)=(A+B)p°forL,=+1 and E,(p)=Ap’>forL, =0

Thus, the VB energy spectrum has two parabolic branches with the first one, E,,(p), which is

twofold degenerate

Two effective masses can be introduced that follow the relations:

A+B =L and
2m,,

Aol
2m,

Usually, B<ObutA+B>0

The difference between light and heavy holes is that the heavy hole has a projection of its orbital
momentum L on the direction of p (what is called the helicity) equal to +1 while the light hole has a

projection equal to O

Semiconductor physics and light-matter interaction
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Effects of spin-orbit interaction on the VB

The spin-orbit interaction will double all the states but the changes in the energy
spectrum will essentially occur at the VB level

L and S are no longer conserved separately but only the total angular momentum J =L + S for

which the eigenvalues of J? are j(j+1) with |I-s| <j < I+s

— CB states are not impacted (j = s = 1/2) but the VB state with / = 1 is split into two states with
j=3/2andj=1/2

For p = 0, we have a fourfold degenerate state (j = 3/2 and J, = +3/2, +1/2, -1/2, -3/2) separated
by an energy A, the spin-orbit splitting, from a doubly degenerate state (j=1/2 and J,= +1/2, -
1/2)

The CB remains doubly degenerate. The value of A is small for materials with light atoms and
may be quite large (comparable to E) in semiconductors composed of heavy atoms like InSb
(cf. slide #18 for the trend regarding the magnitude of A)

Semiconductor physics and light-matter interaction
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Effects of spin-orbit interaction on the VB

Regarding the j = 3/2 state for p = 0 for energies E(p) << A, a
Luttinger Hamiltonian is constructed in a way similar to the case
where SO interaction was neglected. The main difference is that

3x3L,,,
corresponding to j = 3/2

H=Ap* [+B(pJ)

matrices are now replaced by 4 x 4 J, , , matrices

where now [ is a unit 4 x 4 matrix and the matrix J, is
diagonal with eigenvalues +3/2, +1/2, -1/2, and -3/2

B 2
E, (p) = (A+—jp2 = an

p
J. =+3/2
2mhh(z /)

(4, =£1/2)

lh

Semiconductor physics and light-matter interaction

hh

7 N

Band structure of a zinc-blende
SC near the I'-point

Usually, B <0 but A + 9B/4 > 0, hence both

masses are > 0

Helicity equal to +£3/2 for HH and +1/2 for LH
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GaN optical properties (wurtzite structure)

Degeneracy lift

ZINCBLENDE WURTZITE /
CONDUCTION L8 e T 7
2AND ; TN A
| . A B C
, \ 1 L y/
1
: 4 /L)
r - ;r " I r’
8 | 5 /A I -
VALENCE \,—5 / Lo 7
BAND s Aso g X\“ |
S — r7
(T
SPIN-ORBIT CRYSTAL SPIN-ORBIT
FIELD

Figure 5.1 Band structures and labeling of respective transition in zincblende and wurtzite GaN.
The indications L and // show that the transition is allowed for the light polarization £
perpendicular and parallel to the optic (¢) axis, respectively. Parentheses means that the transition is
partially allowed. The value A, and A are the spin-orbit and crystal-field splittings, respectively.

R. Dingle et al., Phys. Rev. B 4, 1211 (1971)

S. Nakamura and S. F. Chichibu in “Introduction to nitride semiconductor blue lasers and LEDs”

(Taylor & Francis Eds, London, 2000)
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Effective mass

Semiconductors Electron effective Hole effective mass
mass (m*/my) (m*Im,)

Si 0.92(m)-0.19(m,)  0.53(m,;,)-0.16(m,,)
Ge 1.59(m,)-0.082(m,) 0.35(m,,,)-0.043(m,,)
GaAs 0.067 0.62(m,,,)-0.074(m,,)

InAs 0.023 0.6(m,;,)-0.027(m,,)

GaN 0.2 1.2(m,,,)-0.26(m,,)

As will be inferred from carrier statistics, in relaxed (i.e., strain-free)
semiconductor layers hole transport will be dominated by heavy holes !
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Band structure of bulk semiconductors - summary
» Upper level state of the VB in T (k = 0),

For cubic SCs, two degenerate bands with different masses m,, >> m,,

Third band, the spin-orbit or split-off VB separated by an energy A at the I'-point from the
HH and LH bands

 Lower level state in the CB
I' = direct

k # 0 = indirect, X-point (AlAs) or near X-point (Si) or L-point (Ge)

- Effective mass given by the dispersion energy curvature
» |sotropic for the CB and the VB in I
* Anisotropic for the CB in X or L

(longitudinal and transverse effective masses)

Semiconductor physics and light-matter interaction
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